大家好,今天小编关注到一个比较有意思的话题,就是关于汽车多通道减震器原理的问题,于是小编就整理了3个相关介绍汽车多通道减震器原理的解答,让我们一起看看吧。
高铁减震原理?
高铁减震器工作原理是当车架与车桥作往复相对运动,而活塞在缸筒内往复移动时,减振器内的油液在通过阀上窄小的孔隙于两相互隔离的内腔间往复流动,由于孔壁与油液间的摩擦及液体分子的内摩擦形成了阻尼力,从而将车身振动的机械能转化为热能被油液和壳体吸收,然后散入大气。阻尼力与通过油液通道的截面积、阀门弹簧刚度及油液的粘度有关。
车轮上跳时,减振器受压缩,活塞相对缸筒下移,于是工作缸下腔容积减少,油压升高,油液经流通阀流入工作缸的上腔。由于上腔被活塞杆占去一部分空间,上腔增加的容积小于下腔减少的容积,故还有一部分油液推开压缩阀,流回储油缸5,这些阀对油液的节流便形成对悬架压缩运动的阻尼力。车轮下落时,减振器受拉伸,活塞相对缸筒上移,于是工作缸上腔油压升高,流通阀关闭,油液推开伸张阀流入下腔。同样,由于活塞杆的存在,自上腔流入下腔的油液不足以充满下腔增加的容积,在下腔产生一定的真空度,这时储油缸中的油液推开补偿阀流入下腔进行补充。此过程阀的节流作用形成对悬架伸张运动的阻尼力。
汽车后轮减震器结构与原理?
减震器的工作原理和结构
由于目前主流使用的都是液压减震器,所以我们下面单就以液压减震器来介绍一下其原理和结构。
液压减震器主要由:上支座、活塞杆、液压油、活塞、储油缸体、压力筒、底部阀、下支座以及通流阀组成。上支座与活塞、活塞杆于一体,连接至车身;下支座与压力筒于一体、连接至车架摆臂。
当车辆因震动而出现相对运动的时候,减震器内部的活塞便会上下移动,而其油腔内部的液压油便会从活塞上面的通流阀反复的从一个腔流入另一个腔。随着通流阀孔壁与油液间的摩擦,以及油液分子之间的内摩擦对产生的震动形成阻尼力,将震动能量转化为热能并散发到大气当中。
悬架系统中由于弹性元件受冲击产生振动,为改善汽车行驶平顺性,悬架中与弹性元件并联安装减振器,为衰减振动,汽车悬架系统中***用减振器多是液力减振器,其工作原理是当车架(或车身)和车桥间受振动出现相对运动时,减振器内的活塞上下移动,减振器腔内的油液便反复地从一个腔经过不同的孔隙流入另一个腔内。
此时孔壁与油液间的摩擦和油液分子间的内摩擦对振动形成阻尼力,使汽车振动能量转化为油液热能,再由减振器吸收散发到大气中。
在油液通道截面和等因素不变时,阻尼力随车架与车桥(或车轮)之间的相对运动速度增减,并与油液粘度有关。
减振器与弹性元件承担着缓冲击和减振的任务,阻尼力过大,将使悬架弹性变坏,甚至使减振器连接件损坏。
因面要调节弹性元件和减振器这一矛盾。
汽车底盘减震器工作原理?
悬架系统中由于弹性元件受冲击产生振动,为改善汽车行驶平顺性,悬架中与弹性元件并联安装减振器,为衰减振动,汽车悬架系统中***用减振器多是液力减振器,其工作原理是当车架(或车身)和车桥间受振动出现相对运动时,减振器内的活塞上下移动,减振器腔内的油液便反复地从一个腔经过不同的孔隙流入另一个腔内。此时孔壁与油液间的摩擦和油液分子间的内摩擦对振动形成阻尼力,使汽车振动能量转化为油液热能,再由减振器吸收散发到大气中。在油液通道截面和等因素不变时,阻尼力随车架与车桥(或车轮)之间的相对运动速度增减,并与油液粘度有关。
到此,以上就是小编对于汽车多通道减震器原理的问题就介绍到这了,希望介绍关于汽车多通道减震器原理的3点解答对大家有用。